Structural Basis of Improved Second-Generation 3-Nitro-tyrosine tRNA Synthetases
نویسندگان
چکیده
Genetic code expansion has provided the ability to site-specifically incorporate a multitude of noncanonical amino acids (ncAAs) into proteins for a wide variety of applications, but low ncAA incorporation efficiency can hamper the utility of this powerful technology. When investigating proteins containing the post-translational modification 3-nitro-tyrosine (nitroTyr), we developed second-generation amino-acyl tRNA synthetases (RS) that incorporate nitroTyr at efficiencies roughly an order of magnitude greater than those previously reported and that advanced our ability to elucidate the role of elevated cellular nitroTyr levels in human disease (e.g., Franco, M. et al. Proc. Natl. Acad. Sci. U.S.A 2013 , 110 , E1102 ). Here, we explore the origins of the improvement achieved in these second-generation RSs. Crystal structures of the most efficient of these synthetases reveal the molecular basis for the enhanced efficiencies observed in the second-generation nitroTyr-RSs. Although Tyr is not detectably incorporated into proteins when expression media is supplemented with 1 mM nitroTyr, a major difference between the first- and second-generation RSs is that the second-generation RSs have an active site more compatible with Tyr binding. This feature of the second-generation nitroTyr-RSs appears to be the result of using less stringent criteria when selecting from a library of mutants. The observation that a different selection strategy performed on the same library of mutants produced nitroTyr-RSs with dramatically improved efficiencies suggests the optimization of established selection protocols could lead to notable improvements in ncAA-RS efficiencies and thus the overall utility of this technology.
منابع مشابه
Functional replacement of the endogenous tyrosyl-tRNA synthetase–tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion
Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetase-tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without in...
متن کاملStructural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms
The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNA(Tyr)s. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNA(Tyr)(GPsiA). Structural information for TyrRS-tRNA(Tyr) complexes is now full-line for three kingdoms. Because the archaeal...
متن کاملStructural plasticity of an aminoacyl-tRNA synthetase active site.
Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine ...
متن کاملAdaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
Class I aminoacyl-tRNA synthetases (aaRSs) use a Rossmann-fold domain to catalyze the synthesis of aminoacyl-tRNAs required for decoding genetic information. While the Rossmann-fold domain is conserved in evolution, the acceptor stem near the aminoacylation site varies among tRNA substrates, raising the question of how the conserved protein fold adapts to RNA sequence variations. Of interest is...
متن کاملThe discriminator bases G73 in human tRNA(Ser) and A73 in tRNA(Leu) have significantly different roles in the recognition of aminoacyl-tRNA synthetases.
The recognition of human tRNA(Leu) or tRNA(Ser) by cognate aminoacyl- tRNA synthetases has distinct requirements. Only one base change (A73-->G) in tRNA(Leu) is required to generate an efficient serine acceptor in vitro, whereas several changes in three structural domains (the acceptor stem, DHU loop and long extra arm) of tRNA(Ser) are necessary in order to produce a leucine acceptor. Hence, t...
متن کامل